image/svg+xml

Dise帽o y simulaci贸n de un aceler贸metro MEMS

Analizando el siguiente modelo:

Dimensiones de aceler贸metro MEMS

\[L_f = L_{fvo} + L_x\]

Capacitancia

Diagrama de capacitores

\[A = L_{fov} tc\] \[C = \frac{Q}{V} = \frac{\varepsilon A}{d}\]

Donde:
$\varepsilon$: Permitividad

\[C_1 = \frac{\varepsilon A}{d+x}\quad,\quad C_2 = \frac{\varepsilon A}{d-x}\] \[\begin{aligned} \Delta C &= C_1 - C_2 = \varepsilon A \left(\frac{1}{d +x} - \frac{1}{d-x}\right)\\ &= \varepsilon A\left(\frac{-2x}{d^2 - x^2}\right) \end{aligned}\]

Desarrollando:

\[\tag{1} \Delta C x^2 - 2\varepsilon A x - \Delta C d^2 = 0\]

Resolviendo para $(1)$:

\[\boxed{x = \frac{\varepsilon A}{\Delta C} \pm \sqrt{\left(\varepsilon \frac{A}{\Delta C}\right)^2 + d^2}}\]

Fuerza el茅ctrica

\[F_e = \frac{1 \varepsilon A V^2}{2 d^2} = ma\] \[\boxed{m = \frac{1 \varepsilon A V^2}{2 a d^2}}\]

Resorte

\[Fr = kx = ma\] \[\boxed{k = \frac{ma}{x}}\]